Add like
Add dislike
Add to saved papers

β-Phenylethylamine and various monomethylated and para-halogenated analogs. Acute toxicity studies in mice.

Phenylethylamine's acute toxic effects in a population of adult (10 to 12 weeks old; ∼30 g) Swiss male albino mice are significantly increased by para-position aromatic ring halogenation. LDLO , LD50 , and LD100 values (mg/kg; x ± SEM) for p-F- (116.7 ± 3.3, 136.7 ± 1.7, and 160.0 ± 2.9), p-Br- (126.7 ± 3.3, 145.0 ± 2.9, and 163.3 ± 3.3), p-Cl- (133.3 ± 3.3, 146.7 ± 1.7, and 165.0 ± 2.9), and p-I-PEA (133.3 ± 3.3, 153.3 ± 1.7, and 168.3 ± 1.7), compared to PEA 203.3 ± 3.3, 226.7 ± 4.4, and 258.3 ± 8.8). Like PEA, the difference between LDLO and LD50 , and LD50 and LD100 for individual amines were similar and in the range (10 to 20%). Toxicity variation between the various p-halogenatedPEAs also fell within a relatively narrow range (as a group: LDLO 116.7 ± 3.3 to 133.3 ± 3.3, LD50 136.7 ± 1.7 to 153.3 ± 1.7, and LD100 160.0 ± 2.9 to 168.3 ± 1.7 mg/kg). PEA methylation, (exception of its α-methyl derivative), results in relatively modest changes in acute toxicity. LDLO , LD50 , and LD100 values (mg/kg; x ± SEM) for N-Me- (176.6 ± 3.3, 200.0 ± 2.9, and 221.7 ± 3.3), p-Me- (183.3 ± 3.3, 206.7 ± 3.3, and 225.0 ± 2.9), o-Me- (210.0 ± 5.8, 233.3 ± 3.3, and 258.3 ± 1.7), and β-MePEA (220.0 ± 5.8, 243.3 ± 4.4, and 278.3 ± 44). Similar to PEA, and the p-HPEAs, the difference between LDLO and LD50 and LD50 and LD100 values for individual amines fell within a relatively narrow range (10 to 20%). Variation in toxicity among the methylatedPEAs also fell within a limited range (as a group: LDLO 176 ± 3.3 to 220 ± 5.8, LD50 200.0 ± 2.9 to 243.3 ± 4.4 and LD100 221.7 ± 3.3 to 278.3 ± 4.4 mg/kg). With the exception of PEA's methyl derivative (amphetamine) all the amines studied are rapidly metabolized by monoamine oxidase. This pharmacokinetics difference would help to explain the markedly higher amphetamine toxicity [(LDLO , LD50 and LD100 (mg/kg; x ± SEM) of 21.3 ± 0.9, 25.0 ± 0.6, and 29.3 ± 0.7, respectively)].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app