Add like
Add dislike
Add to saved papers

NIR-Fluorescent Multidye Silica Nanoparticles with Large Stokes Shifts for Versatile Biosensing Applications.

We have synthesized and characterized of a series of single and multidye copolymerized nanoparticles with large to very large Stokes shifts (100 to 255 nm) for versatile applications as standalone or multiplexed probes in biological matrices. Nanoparticles were prepared via the Stöber method and covalently copolymerized with various combinations of three dyes, including one novel aminocyanine dye. Covalently encapsulated dyes exhibited no significant leakage from the nanoparticle matrix after more than 200 days of storage in ethanol. Across multiple batches of nanoparticles with varying dye content, the average yields and average radii were found to be highly reproducible. Furthermore, the batch to batch variability in the relative amounts of dye incorporated was small (relative standard deviations <2.3%). Quantum yields of dye copolymerized nanoparticles were increased 50% to 1000% relative to those of their respective dye-silane conjugates, and fluorescence intensities were enhanced by approximately three orders of magnitude. Prepared nanoparticles were surface modified with polyethylene glycol and biotin and bound to streptavidin microspheres as a proof of concept. Under single wavelength excitation, microsphere-bound nanoparticles displayed readily distinguishable fluorescence signals at three different emission wavelengths, indicating their potential applications to multicolor sensing. Furthermore, nanoparticles modified with polyethylene glycol and biotin demonstrated hematoprotective qualities and reduced nonspecific binding of serum proteins, indicating their potential suitability to in vivo imaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app