Add like
Add dislike
Add to saved papers

Colorimetric and turn-on Fluorescence Chemosensor for Hg 2+ Ion Detection in Aqueous Media.

A new rhodamine 6G based fluorescent and colorimetric chemosensor, containing N-methyl imidazole nucleus, for the selective detection of Hg2+ ion was designed and synthesized. The results of UV-Vis and fluorescence spectral study indicated that the receptor is selective and sensitive towards Hg2+ with no noticeable interference with other competitive metal ions. The addition of Hg2+ to the receptor induced a rapid color change to pink from colorless and the turn-on fluorescence response toward Hg2+ among different cations was studied. The stoichiometric ratio of 1:1 between the receptor and Hg2+ was supported by Job's plot. The color change and turn-on fluorescence response upon addition of Hg2+ ion was ascribed by the spirolactam ring-opening mechanism. The probable mode of binding between the receptor and Hg2+ was confirmed by 1 H NMR and Mass spectral study. For the practical application, its electrospun nanofiber test strips successfully applied to recognize Hg2+ ion in aqueous media. Graphical Abstract Schematic representation of Hg2+ detection by rhodamine based sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app