Add like
Add dislike
Add to saved papers

Starlike Branched Polyacrylamides by RAFT Polymerization-Part I: Synthesis and Characterization.

ACS Omega 2018 December 32
Starlike branched polyacrylamides (SB-PAMs) were synthesized using reversible addition-fragmentation chain transfer copolymerization of acrylamide (AM) and N , N '-methylenebis(acrylamide) (BisAM) in the presence of 3-(((benzylthio) carbonothioyl)thio)propanoic acid as a chain transfer agent, followed by chain extension with AM. The amount of incorporated BisAM in the core and the amount of AM during chain extension have been systematically varied. Core structures were achieved by incorporation of total monomer ratios [BisAM]/[AM] ranging from 0.010 to 0.143. The obtained macromolecular chain transfer agents had weight average molecular weights in the range of (2.2-7.8) × 103 Da and polydispersity indices between 1.2 and 15.1. Kinetic experiments were performed to investigate the extent of control of polymerization. Finally, the expansion of the core structures by chain-extension polymerization resulted in the successful preparation of high molecular weight SB-PAMs with apparent molecular weights ranging from 19 to 1250 kDa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app