JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Novel glomerular filtration markers.

Chronic kidney disease is currently assessed by estimated glomerular filtration rate, a mathematical construct based on creatinine or creatinine and cystatin concentration. Creatinine-based equations have improved with standardization efforts and the Modification of Diet in Renal Disease Study (MDRD) and CKD-Epidemiology Collaboration Study (CKD-EPI). Because the measurement of creatinine is subject to interference from non-GFR determinants, alternative markers have long been sought. These have included cystatin C and low molecular weight proteins like β2-microglobulin and beta trace protein. Tubular disease often occurs before glomerular filtration is impaired and investigators have investigated the excretion of other low molecular weight proteins such as Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Injury Molecule-1 and N-acetyl-β-d-glucosaminidase. While preliminary, there is some evidence linking these analytes with GFR, disease stage and mortality. Although asymmetrical dimethyl arginine, an inhibitor of nitric oxide, has been shown to be associated with progression of renal disease, symmetric dimethyl arginine may be a better marker. Recent work has also explored the potential of microRNA (miRNA) analysis and metabolomics studies to further elucidate this complex pathophysiologic disease process. Investigators hope to improve our ability to detect CKD by the use of test panels, i.e., various marker combinations thereof. Unfortunately, most of these markers lack standardization unlike traditional measures that rely on creatinine and cystatin C measurement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app