Add like
Add dislike
Add to saved papers

On (Sub)mesoscopic Scale Peculiarities of Diffusion Driven Growth in an Active Matter Confined Space, and Related (Bio)material Realizations.

Bio Systems 2019 January 4
Diffusion in a confined space becomes an extremely important problem with many versatile applications, ranging from biomedical to biotechnological, and involving functional and smart (bio)materials. In this study, we have shown that the well-known Mullins-Sekerka approach to morphological stability of the diffusional non-ideal sphere's growth, for which a confinement factor disappears, is a firm starting point for further questions. It has two modifications and/or extensions for which the confinement factor is involved readily and becomes (in)finite firstly for microscale (or micrometer scale) involving biomatter packing phenomena. They are also applicable for nanoscopic biomaterial arrangements for which very tightly packed material and active-matter including outcomes of subdiffusive proveniency would manifest, as it has already been observed for the protein crystal growth in pores and globule-to-coil crossover phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app