Add like
Add dislike
Add to saved papers

Metabolic profiling of synthetic cannabinoid 5F-ADB by human liver microsome incubations and urine samples using high-resolution mass spectrometry.

5F-ADB (methyl 2-{[1-(5-fluoropentyl)-1H-indazole-3-carbonyl] amino}-3,3-dimethylbutanoate) is a frequently abused new synthetic cannabinoid that has been sold since at least the end of 2014 in the drug market and has been classified as an illicit drug in most European countries, as well as Turkey, Japan and the United States. In this study, the in vitro metabolism of 5F-ADB was investigated by using pooled human liver microsomes (HLMs) assay and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). 5F-ADB (5 μmol/L) was incubated with HLMs for up to 3 h, and the metabolites were identified using LC-HRMS and software-assisted data mining. The in vivo metabolism was investigated by the analysis of 30 authentic urine samples and was compared to the data received from the in vitro metabolism study. Less than 3.3% of the 5F-ADB parent compound remained after 1 h of incubation, and no parent drug was detected after 3 h. We identified 20 metabolites formed via ester hydrolysis, N-dealkylation, oxidative defluorination, hydroxylation, dehydrogenation, further oxidation to N-pentanoic acid and glucuronidation or a combination of these reactions in vitro. In 12 urine samples (n= 30), 5F-ADB was detected as the parent drug. Three of the identified main metabolites 5F-ADB carboxylic acid (M20), monohydroxypentyl-5F-ADB (M17), carboxypentyl ADB carboxylic acid (M8) were suggested as suitable urinary markers. The screening of 8235 authentic urine samples for identified 5F-ADB metabolites in vitro resulted in 3135 cases of confirmed 5F-ADB consumption (38%).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app