Add like
Add dislike
Add to saved papers

Nitric oxide, γ-aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress.

Nitric oxide (NO), γ-aminobutyric acid (GABA), and mannose (MAS) could be important regulators of plant growth and adaptation to water stress. The application of sodium nitroprusside (SNP, a NO donor), GABA, and MAS improved plant growth under water-sufficient condition and effectively mitigated water stress damage to white clover. The metabonomic analysis showed that both of SNP and GABA application resulted in a significant increase in myo-inositol content; the accumulation of mannose was commonly regulated by SNP and MAS; GABA and MAS induced the accumulation of aspartic acid, quinic acid, trehalose, and glycerol under water deficit. In addition, citric acid was uniquely up-regulated by SNP associated with TCA cycle under water stress. The GABA specially induced the accumulation of GABA, glycine, methionine, and aconitic acid related to GABA shunt, amino acids metabolism, and TCA cycle in response to water stress. The MAS uniquely enhanced the accumulation of asparagine, galactose, and D-pinitol in association with amino acids and sugars metabolism under water stress. SNP-, GABA-, and MAS-induced changes of metabolic profiles and associated metabolic pathways could contribute to enhanced stress tolerance via involvement in TCA cycle for energy supply, osmotic adjustment, antioxidant defense, and signal transduction for stress defense in white clover.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app