Add like
Add dislike
Add to saved papers

Validation of a Finite Element 50th Percentile THOR Anthropomorphic Test Device in Multiple Sled Test Configurations.

Computational models of anthropomorphic test devices (ATDs) can be used in crash simulations to quantify the injury risks to occupants in both a cost-effective and time-sensitive manner. The purpose of this study was to validate the performance of a 50th percentile THOR finite element (FE) model against a physical THOR ATD in 11 unique loading scenarios. Physical tests used for validation were performed on a Horizontal Impact Accelerator (HIA) where the peak sled acceleration ranged from 8-20 G and the time to peak acceleration ranged from 40-110 ms. The directions of sled acceleration relative to the THOR model consisted of -GX (frontal impact), +GY (left-sided lateral impact), and +GZ (downward vertical impact) orientations. Simulation responses were compared to physical tests using the CORrelation and Analysis (CORA) method. Using a weighted method, the average response and standard error by direction was +GY (0.83±0.03), -GX (0.80±0.01), and +GZ (0.76±0.03). Qualitative and quantitative results demonstrated the FE model's kinetics and kinematics were sufficiently validated against its counterpart physical model in the tested loading directions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app