Add like
Add dislike
Add to saved papers

Effectiveness of Fragment C Domain of Tetanus Toxin and Pramipexole in an Animal Model of Parkinson's Disease.

Neurotoxicity Research 2019 January 4
Reports indicate that striatal dopaminergic damage induced by 6-hydoxydopamine (6-OHDA) can be blocked by C-terminal domain of tetanus toxin (Hc-TeTx), suggesting possible therapeutic potential of Hc-TeTx in Parkinson's disease (PD). Pramipexole (PPX), a D2/D3 dopaminergic agonist, is currently used in PD treatment. The purpose of this study was to gain some understanding of the actions of each drug, including potential antioxidant and anti-inflammatory effects and importantly, to determine whether the combination of the two drugs would be superior to each alone. Adult male Wistar rats were administered 6-OHDA into the dorso-lateral striatum, and the effects of Hc-TeTx fragment (20 μg/kg i.m. every 24 h) for 3 days; PPX (1 mg/kg p.o., every 12 h) for 30 days and their combination on various motor and neurochemical parameters were evaluated. Behavioral tests were carried out at 15 and 30 days post-treatments. At day 31, the animals were sacrificed and the levels of tyrosine hydroxylase (TH), reflecting dopaminergic activity in both striatum and substantia nigra, were evaluated. In addition, indices of astrogliosis, microgliosis, as well as oxidative stress in the striatum were determined. Both Hc-TeTx and PPX ameliorated the motor and neurochemical deficits induced by 6-OHDA lesion; however, the combination of the two drugs was not superior to each alone. Hence, at concentrations used in this study, no significant advantage in combining Hc-TeTx with PPX was noted. Although the results suggest similar neurochemical effects of the two compounds, further evaluation of different concentrations of Hc-TeTx and PPX as potential intervention in PD is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app