Add like
Add dislike
Add to saved papers

Rapid and continuous on-chip loading of trehalose into erythrocytes.

Freeze-drying is a promising approach for the long-term storage of erythrocytes at room temperature. Studies have shown that trehalose loaded into erythrocytes plays an important role in protecting erythrocytes against freeze-drying damage. Due to the impermeability of the erythrocyte membrane to trehalose, many methods have been developed to load trehalose into erythrocytes. However, these methods usually require multistep manual manipulation and long processing time; the adopted protocols are also diverse and not standardized. Thus, we develop an osmotically-based trehalose-loading microdevice (TLM) to rapidly, continuously, and automatically produce erythrocytes with loaded trehalose. In the TLM, trehalose is loaded through the erythrocyte membrane pores induced by hypotonic shock; then, the trehalose-loaded erythrocytes are rinsed to remove hemoglobin molecules and cell fragments, and the extracellular solution is restored to the isotonic state by integrating a rinsing-recovering design. First, the mixing function and the rinsing-recovering function were confirmed using a fluorescent solution. Then, the performance of the TLM was evaluated under various operating conditions with respect to the loading efficiency of trehalose, the hemolysis rate of erythrocytes (ϕ), the recovery rate of hemoglobin in erythrocytes (φ), and the separation efficiency of the TLM. Finally, the preliminary study of the freeze-drying of erythrocytes with loaded trehalose was accomplished using the TLM. The results showed that under the designated operating conditions, the loading efficiency for human erythrocytes reached ~21 mM in ~2 min with a ϕ value of ~17% and a φ value of ~74%. This study provides insights into the design of the on-chip loading of trehalose into erythrocytes and promotes the automation of life science studies on biochips.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app