ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Epstein-Barr Virus Genome Replication as a Molecular Target for Cancer Therapy].

Epstein-Barr virus (EBV), a human oncogenic virus, is a B cell-tropic herpesvirus and has the ability to immortalize normal B cells during latent infection. The Epstein-Barr nuclear antigen 1 (EBNA1) protein of EBV is expressed in the most EBV latently infected cells and binds to a specific viral genome region termed "oriP" (origin of plasmid replication) to maintain the stability of the approximately 170 kb double-stranded circular virus genomic DNA (episome) in cells. EBV elimination is thought to inhibit progression of EBV-associated malignancies, and the EBNA1-dependent mechanisms for EBV episome replication and maintenance are considered to be novel molecular targets for anti-EBV therapy. We have explored small-molecule compounds that can inhibit the binding between EBNA1 protein and oriP and found one pyrrole imidazole polyamide named DSE3 which can also inhibit EBV-mediated immortalization of normal B cells. These data suggested that an EBNA1-targeting strategy could be useful to combat EBV-associated malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app