Add like
Add dislike
Add to saved papers

The ArlR-MgrA regulatory cascade regulates PIA-dependent and protein-mediated biofilm formation in Rbf-dependent and Rbf-independent pathways.

The two-component system response regulator ArlR and the global regulator MgrA in Staphylococcus aureus participated in numerous biological processes including biofilm formation inhibition. Previous studies have shown that these two regulators could function as a regulatory cascade. Rbf is a positive regulator of biofilm formation enhancing the production of PIA (polysaccharide intercellular adhesin). Here we have demonstrated that both ArlR and MgrA can directly bind to the promoter of rbf and repress its expression. ArlR and MgrA can also directly bind to the promoter of ica operon and enhance the expression of icaA and PIA production, revealing that the ArlR-MgrA regulatory cascade controls PIA-dependent biofilm formation. In addition, we have found that Rbf can directly bind to the aur promoter and repress the expression of aur, which encodes a protease initiating a protease cascade to inhibit protein-mediated biofilm formation. Moreover, our data indicate that the ArlR-MgrA regulatory cascade can promote the expression of aur by directly binding to its promoter and inhibit protein-mediated biofilm formation. These findings shed light on the molecular mechanisms of both PIA-dependent and protein-mediated biofilm formation modulated by the ArlR-MgrA regulatory cascade and the new role of Rbf in protein-mediated biofilm formation, and broaden our understanding of the biofilm formation regulation in S. aureus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app