Add like
Add dislike
Add to saved papers

Hollow CuS nanocube as nanocarrier for synergetic chemo/photothermal/photodynamic therapy.

Here, hollow CuS nanocubes about 250-300 nm in size were synthesized based on the Kirkendall effect by using CuO nanocubeas precursor and template. The reactant concentration and reaction time could be adopted to adjust the final composition and hollow structure. The as-synthetic CuS nanocube was assembled by a great deal of nanoparticles (15-20 nm), making abundant porous structure in the shell layer. The localized surface plasmon resonance and the novel porous hollow structure (improve light reflex) further make sure the enhanced Near-infrared (NIR) light absorption as well as photothermal conversion efficiency (30.3%). Moreover, the mechanism of reactive oxygen species (ROS) generation was investigated in detail, revealing that the released Cu+ ion and the oxygen are the determined factors. To further improve the monodispersity and biocompatibility, PEG-NH2 modified nanostructure (CuS@PEG) was prepared and it possessed high loading efficiency to doxorubicin hydrochloride (DOX). Moreover, DOX-CuS@PEG reveals the acid and NIR sensitive-release performance. The synergistic effect of chemotherapy associated with photothermal therapy (PTT) and photodynamic therapy (PDT) display the enhanced specific cytotoxicity to cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app