Add like
Add dislike
Add to saved papers

Mesoporous multi-silica layer-coated Y 2 O 3 :Eu core-shell nanoparticles: Synthesis, luminescent properties and cytotoxicity evaluation.

Mesoporous multi-layered silica-coated luminescent Y2 O3 :Eu nanoparticles (NPs) were prepared by a urea-based decomposition process, and their surfaces were gradually modified with nanoporous and mesoporous silica layers using modified sol-gel methods. The synthesized luminescent core-shell NPs were characterized thoroughly to investigate their structural, morphological, thermal, optical, photo luminescent properties and their surface chemistry. The morphology of the core NPs were nearly spherical in shape and were nano-sized grains. The observed luminescent efficiency of the mesoporous multi-layered silica-coated luminescent core NPs was gradually reduced because of bond formation between the Y2 O3 :Eu core and the amorphous silica shell via YOSiOH bridges on the surface of the NPs; the bonds suppressed the non-radiative transition pathways. Biocompatibility tests on Human breast cancer cells using the 3‑(4,5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide and lactate dehydrogenase assays indicated that the core-shell NPs were non-toxic even at high concentrations. The mesoporous SiO2 layer played a key role in perfecting the solubility, biocompatibility, and non-toxicity of the NPs. The zeta potential, surface chemistry (Fourier transform infrared spectroscopy), and optical absorption spectral analyses revealed the high hydrophilicity of the as-prepared core-shell NPs because of the active surface-functionalized silanol (SiOH) groups, which could potentially offer many exciting opportunities in photonic-based biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app