Add like
Add dislike
Add to saved papers

Establishment of an in vitro fertilization system in wheat (Triticum aestivum L.).

In vitro fertilization (IVF) systems using isolated gametes have been utilized to dissect post-fertilization events in angiosperms, since the female gametophytes of plants are deeply embedded within ovaries. In addition, IVF systems have been used to produce hybrid and polyploid zygotes. Complete IVF systems have been established in maize and rice, two of three major crop species providing the majority of human energy intake. Among those crop species, gametes of wheat have not been used to establish a complete IVF system successfully. In this study, a wheat IVF system was developed to introduce the advantages of this technology to wheat research. Fusion of gametes was performed via a modified electrofusion method, and the fusion product, a zygote, formed a cell wall and two nucleoli. The first division of zygotes was observed 19-27 h after fusion, and the resulting two-celled embryo developed into 10-20-celled globular-like embryos and multicellular club-shaped embryos by 3 and 7-10 days after fusion, respectively. Such zygotic division profiles were mostly consistent with those in the embryo sac, suggesting that the division profile of IVF-produced early embryos reflects that of early embryos in planta. Although the IVF-produced club-shaped embryos did not develop into differentiated embryos but into compact embryonic calli, fertile plants could be regenerated from the embryonic calli, and the seeds harvested from those plants grew normally into seedlings. The IVF system described here might become an important technique for generating new genotypes of wheat and/or new hybrids as well as for investigating fertilization-induced events in wheat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app