Add like
Add dislike
Add to saved papers

Chemical imaging of buried interfaces in organic-inorganic devices using FIB-ToF-SIMS.

Organic-inorganic hybrid materials enable the design and fabrication of new materials with enhanced properties. The interface between the organic and inorganic materials is often critical to the device's performance and therefore chemical characterization is of significant interest. Since the interfaces are often buried, milling by focused ion beams (FIB) to expose the interface is becoming increasingly popular. Chemical imaging can subsequently be obtained using secondary ion mass spectrometry. However, the FIB milling process damages the organic material. In this study, we make an organic-inorganic test structure to develop a detailed understanding of the processes involved in FIB milling and SIMS imaging. We provide an analysis methodology that involves a "clean-up" process using sputtering with an argon gas cluster ion source to remove the FIB induced damage. The methodology is evaluated for two additive manufactured devices, an encapsulated strain sensor containing silver tracks embedded in a polymeric material and a copper track on a flexible polymeric substrate created using a novel nanoparticle sintering technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app