Add like
Add dislike
Add to saved papers

Image quality optimization using a narrow vertical detector dental cone-beam CT.

OBJECTIVES:: To determine the optimized kV setting for a narrow detector cone-beam CT (CBCT) unit.

METHODS:: Clinical (CL) and quantitative (QUANT) evaluations of image quality were performed using an anthropomorphic phantom. Technical (TECH) evaluation was performed with a polymethyl methacrylate phantom. Images were obtained using a PaX-i3D Green CBCT (Vatech, Hwaseong, Korea) device, with a large 21 × 19 and a medium 12 × 9 cm field of view (FOV), and high-dose (HD-ranging from 85 to 110 kV) and low-dose (LD-ranging from 75 to 95 kV) protocols, totaling four groups (21 × 19 cm HD, 21 × 19 cm LD, 12 × 9 cm HD, 12 × 9 cm LD). The radiation dose within each group was fixed by adapting the mA according to a predetermined dose-area product. For CL evaluation, three observers assessed images based on overall quality, sharpness, contrast, artefacts, and noise. For QUANT evaluation, mean gray value shift, % increase of standard deviation (SD), % of beam hardening and contrast-to-noise ratio (CNR) were calculated. For TECH evaluation, segmentation accuracy, CNR, metal artefact SD, metal object area, and sharpness were measured. Representative parameters were chosen for CL, QUANT, and TECH evaluations to determine the optimal kV based on biplot graphs. kV values of the same protocol were compared by the bootstrapping approach. The ones that had statistical differences with the best kV were considered as worse quality.

RESULTS:: Overall, kV values within the same group showed similar quality (p > 0.05), except for 110 kV in 21 × 19 cm HD and 85 kV in 12 × 9 cm HD of CL score; also 85, 90 kV in 21 × 19 cm HD and 75, 80 kV in 21 × 19 cm LD of QUANT score which were worse (p < 0.05).

CONCLUSION:: At a constant dose, low and high kV protocols yield acceptable image quality for a narrow-detector CBCT unit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app