Add like
Add dislike
Add to saved papers

Efficient gallium-68 radiolabeling reaction of DOTA derivatives using a resonant-type microwave reactor.

Gallium-68 (68 Ga, t1/2 = 68 min) can be easily obtained from a 68 Ge/68 Ga generator and several such systems are commercially available. The use of positron emission tomography (PET) imaging using 68 Ga-labeled radiopharmaceuticals is expected to increase in both preclinical and clinical settings. However, the chelation between a 68 Ga cation and the bifunctional macrocyclic chelates that are used for labeling bioactive substances, such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), requires a relatively long reaction time and high temperature to achieve a high radiochemical yield. Previously, we reported on a novel resonant-type microwave reactor that can be used for radiosynthesis and the usefulness of this reactor in the PET radiosynthesis of 18 F. In the present study, the usefulness of this resonant-type microwave reactor was evaluated for the radiolabeling of model macrocyclic chelates with 68 Ga. As a result, microwave heating of resonant-type microwave reactor notably improved the rate of the 68 Ga labeling chelate reaction in a short time period of 2 min, compared to the use of a conventional heating method. Additionally, it was found that the use of this reactor made it possible to decrease the amount of precursors required in the reaction and to improve the molar activity of the labeled compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app