Add like
Add dislike
Add to saved papers

A computational reaction-diffusion model for biosynthesis and linking of cartilage extracellular matrix in cell-seeded scaffolds with varying porosity.

Cartilage tissue engineering is commonly initiated by seeding cells in porous materials such as hydrogels or scaffolds. Under optimal conditions, the resulting engineered construct has the potential to fill regions where native cartilage has degraded or eroded. Within a cell-seeded scaffold supplied by nutrients and growth factors, extracellular matrix accumulation should occur concurrently with scaffold degradation. At present, the interplay between cell-mediated synthesis and linking of matrix constituents and the evolving scaffold properties is not well understood. We develop a computational model of extracellular matrix accumulation in a cell-seeded scaffold based on a continuum reaction-diffusion system with inhomogeneous inclusions representing individual cells. The effects of porosity on engineered tissue outcomes is accounted for via the use of mixture variables capturing the spatiotemporal dynamics of both bound and unbound system constituents. The unbound constituents are the nutrients and unlinked extracellular matrix, while the bound constituents are the scaffold and the linked extracellular matrix. The linking model delineates binding of matrix constituents to either existing bound extracellular matrix or to scaffold. Results on a representative domain exhibit bound matrix trapping (vs spreading) around cells in scaffolds with lower (vs higher) initial porosity, similar to experimental results obtained by Erickson et al. (Osteoarthr Cartil 17:1639-1648, 2009). Significant alterations in the spatiotemporal accumulation of bound matrix are observed when, among the set of all model parameters, only the initial scaffold porosity is varied. The model presented herein proposes a methodology to investigate coupling between cell-mediated biosynthesis and linking of extracellular matrix in porous, cell-seeded scaffolds that has the potential to aid in the design of optimal tissue-engineered cartilage constructs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app