Add like
Add dislike
Add to saved papers

Effects of autonomic denervations on the rhythms in axial length and choroidal thickness in chicks.

In chicks, axial length and choroidal thickness undergo circadian oscillations. The choroid is innervated by both branches of the autonomic nervous system, but their contribution(s) to these rhythms is unknown. We used two combination lesions to test this. For parasympathectomy, nerve VII was sectioned presynaptic to the pterygopalatine ganglia, and the ciliary post-ganglionics were cut (double lesion; n = 8). Triple lesions excised the sympathetic superior cervical ganglion as well (n = 8). Sham surgery was done in controls (n = 7). 8-14 days later, axial dimensions were measured with ultrasonography at 4-h intervals over 24 h. Rhythm parameters were assessed using a "best fit" function, and growth rates measured. Both types of lesions resulted in ultradian (> 1 cycle/24 h) rhythms in choroidal thickness and axial length, and increased vitreous chamber growth (Exp-fellow: double: 69 µm; triple: 104 µm; p < 0.05). For double lesions, the frequency was 1.5 cycles/day for both rhythms; for triples the choroidal rhythm was 1.5 cycles/day, and the axial was 3 cycles/day. For double lesions, the amplitudes of both rhythms were larger than those of sham surgery controls (axial: 107 vs 54 µm; choroid: 124 vs 29 µm, p < 0.05). These findings provide evidence for the involvement of abnormal ocular rhythms in the growth stimulation underlying myopia development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app