JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Autonomic dysfunction in Parkinson disease and animal models.

Parkinson disease has traditionally been classified as a movement disorder, despite patients' accounts of diverse symptoms stemming from impairments in numerous body systems. Today, Parkinson disease is increasingly recognized by clinicians and scientists as a complex neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with pathology throughout all major branches of the nervous system. Dysfunction of the autonomic nervous system, or dysautonomia, is a common feature of Parkinson disease. It produces signs and symptoms that severely affect patients' quality of life, such as blood pressure dysregulation, hyperhidrosis, and constipation. Treatment options for dysautonomia are limited to symptom alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. Animal models provide a platform to interrogate mechanisms of Parkinson disease-related autonomic nervous system dysfunction and test novel treatment strategies. Several animal models of Parkinson disease are available, each with different effects on the autonomic nervous system. This review critically analyses key dysautonomia signs and symptoms and associated pathology in Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to assess the contribution of animal models to the understanding of Parkinson disease autonomic dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app