Add like
Add dislike
Add to saved papers

Performance of machine learning methods in diagnosing Parkinson's disease based on dysphonia measures.

Parkinson's disease (PD) is a widespread degenerative syndrome that affects the nervous system. Its early appearing symptoms include tremor, rigidity, and vocal impairment (dysphonia). Consequently, speech indicators are important in the identification of PD based on dysphonic signs. In this regard, computer-aided-diagnosis systems based on machine learning can be useful in assisting clinicians in identifying PD patients. In this work, we evaluate the performance of machine learning based techniques for PD diagnosis based on dysphonia symptoms. Several machine learning techniques were considered and trained with a set of twenty-two voice disorder measurements to classify healthy and PD patients. These machine learning methods included linear discriminant analysis (LDA), k nearest-neighbors ( k -NN), naïve Bayes (NB), regression trees (RT), radial basis function neural networks (RBFNN), support vector machine (SVM), and Mahalanobis distance classifier. We evaluated the performance of these methods by means of a tenfold cross validation protocol. Experimental results show that the SVM classifier achieved higher average performance than all other classifiers in terms of overall accuracy, G-mean, and area under the curve of the receiver operating characteristic plot. The SVM classifier achieved higher performance measures than the majority of the other classifiers also in terms of sensitivity, specificity, and F-measure statistics. The LDA, k -NN and RT achieved the highest average precision. The RBFNN method yielded the highest F-measure.; however, it performed poorly in terms of other performance metrics. Finally, t tests were performed to evaluate statistical significance of the results, confirming that the SVM outperformed most of the other classifiers on the majority of performance measures. SVM is a promising method for identifying PD patients based on classification of dysphonia measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app