Add like
Add dislike
Add to saved papers

Graphene oxide down-regulates genes of the oxidative phosphorylation complexes in a glioblastoma.

BMC Molecular Biology 2019 January 4
BACKGROUND: Recently different forms of nanographene were proposed as the material with high anticancer potential. However, the mechanism of the suppressive activity of the graphene on cancer development remains unclear. We examined the effect of oxygenated, reduced and pristine graphene on the gene expression in glioblastoma U87 cell line.

RESULTS: Conducting microarrays and RT-qPCR analysis we explored that graphene oxide (rather than reduced graphene oxide and pristine graphene) down-regulates the mRNA expression of mitochondrial oxidative phosphorylation (OXPHOS) nuclear genes of complexes I, III, IV and V. The presented results provide first evidence for the hypothesis that the suppressed growth of GBM can be the consequence of down-regulation of OXPHOS protein expression and decreased ATP level.

CONCLUSIONS: We suggest that changes in the expression of OXPHOS genes identified in our study may mediate the anti-proliferative and anti-migratory effects of graphene oxide in glioblastoma cells. However, further investigations with different cell lines, regarding expression, regulation and activity of OXPHOS genes identified in our study is necessary to elucidate the mechanism mediating the anti-proliferative and anti-migratory effects of graphene oxide in glioblastoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app