Add like
Add dislike
Add to saved papers

Synthesis, structure and long-lived NIR luminescence of lanthanide ate complexes with perfluorinated 2-mercaptobenzothiazole.

To obtain new efficient lanthanide-based NIR luminophores perfluorinated 2-mercaptobenzothiazole was used as a ligand. The ate-complexes [(Ln(mbtF)4)-(Na(DME)3)+] of Nd (1), Sm (2), Tb (3), Er (4), Yb (5) and [(Y(mbtF)4)-(Li(DME)3)+] (6) were synthesized in high yields by the reactions of the respective silylamide compounds Ln[N(SiMe3)2]3 and M[N(SiMe3)2] (M = Li, Na) with 4,5,6,7-tetrafluoro-1,3-benzothiazol-2(3H)-thione (HmbtF) in DME media. The complexes 1-3 and 6 were structurally characterized by X-ray diffraction analysis. It has been shown that the mbtF ligands sensitize the luminescence of Nd, Sm, Tb, Er and Yb ions upon mild UV or blue light excitation. The NIR luminescence of crystalline compounds 1, 2, 4 and 6 has been studied by time-resolved techniques. As expected, the compounds exhibit prolonged NIR luminescence due to the removal of C-H groups from lanthanide centers and the absence of C-O bonds in the coordination sphere of the lanthanides. The synthesized compounds are promising materials for NIR laser applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app