Add like
Add dislike
Add to saved papers

RNA-Seq analysis in an avian model of maternal phenylketonuria.

Cardiac malformations (CVMs) are a leading cause of infant morbidity and mortality. CVMs are particularly prevalent when the developing fetus is exposed to high levels of phenylalanine in-utero in mothers with Phenylketonuria. Yet, elucidating the underlying molecular mechanism leading to CVMs has proven difficult. In this study we used RNA-Seq to investigate an avian model of MPKU and establish differential gene expression (DEG) characteristics of the early developmental stages HH10, 12, and 14. In total, we identified 633 significantly differentially expressed genes across stages HH10, 12, and 14. As expected, functional annotation of significant DEGs identified associations seen in clinical phenotypes of MPKU including CVMs, congenital heart defects, craniofacial anomalies, central nervous system defects, and growth anomalies. Additionally, there was an overrepresentation of genes involved in cardiac muscle contraction, adrenergic signaling in cardiomyocytes, migration, proliferation, metabolism, and cell survival. Strikingly, we identified significant changes in expression with multiple genes involved in Retinoic Acid (RA) metabolism and downstream targets. Using qRTPCR, we validated these findings and identified a total of 42 genes within the RA pathway that are differentially expressed. Here, we report the first elucidation of the molecular mechanisms of cardiovascular malformations in MPKU conducted at early developmental timepoints. We provide evidence suggesting a link between PHE exposure and the alteration of RA pathway. These results are promising and offer novel findings associated with congenital heart defects in MPKU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app