Add like
Add dislike
Add to saved papers

A novel hybrid of 3-benzyl coumarin seco-B-ring derivative and phenylsulfonylfuroxan induces apoptosis and autophagy in non-small-cell lung cancer.

Phytomedicine 2019 January
BACKGROUND: Compound 6, as a novel hybrid of 3-benzyl coumarin seco-B-ring derivative and nitric oxide (NO) donor phenylsulfonylfuroxan, has the potential to develop into an anticancer drug because it displays significant antiproliferation activitity for various solid cancer cell lines including non-small-cell lung cancer (NSCLC) cells.

PURPOSE: We attempt to uncover the capacities of compound 6 to induce apoptosis and autophagy in NSCLC cells, as well as the underlying mechanism involved in this process.

METHODS: The effect of compound 6 on cell viability was evaluated in A549 cells by MTT assay. Apoptosis was mainly detected by flow cytometry. The induction of autophagy was observed by transmission electron microscopy (TEM), confocal microscopy as well as western-blotting technique. The expression of all related-proteins including PI3K/Akt/mTOR signaling pathway were also examined by western-blotting technique.

RESULTS: Above all, distinct growth inhibition and caspase-dependent apoptosis were detected in A549 cells administered with compound 6. Then, we confirmed the induction of autophagy triggered by compound 6 in A549 cells. Noticeably, blocking autophagy using a series of inhibitors and ATG5 siRNA had little effect on the cytotoxicity of compound 6, elucidating nonprotective autophagy triggered in NSCLC cells. Further research illustrated that PI3K/Akt/mTOR signaling pathway was involved in compound 6-induced apoptosis, and 3-MA as well as LY294002 had synergistic inhibiting effect on proliferation of A549 cells through the pathway mentioned above.

CONCLUSION: These findings raise a rationale that this 3-benzyl coumarin seco-B-ring derivative and phenylsulfonylfuroxan hybrid could be a promising candidate for developing as a therapeutic agent toward NSCLC, and the combination therapy through PI3K/Akt/mTOR signaling pathway may result in optimized treatment outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app