Add like
Add dislike
Add to saved papers

Axisymmetric scalable magneto-gravitational trap for diamagnetic particle levitation.

We report on the design, construction, and use of axisymmetric magnetic traps for levitating diamagnetic particles. The magnetic traps each consist of two pole pieces passively driven by a neodymium iron boron (NdFeB) permanent magnet. The magnetic field configuration between the pole pieces combined with the earth's gravitational field forms a 3D confining potential capable of levitating a range of diamagnetic substances, e.g., graphite powder, silica microspheres, and gallium nitride (GaN) powder and nanowires. Particles trap stably at atmosphere and in high-vacuum for periods up to weeks with lifetimes largely determined by choices made to actively destabilize the trap. We describe the principles of operation, finite element design, approximate closed-form results for design rules, and examples of operation of such traps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app