Add like
Add dislike
Add to saved papers

A dual TiO 2 /Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system.

A dual-anode consists of stainless steel and TiO2 /Ti electrodes is used to study the kinetics of the degradation of hazardous chemicals exemplified by azo dye orange G (OG) using a coupling photoelectrochemical catalytic and photoelectro-Fenton (PEC/PEF) system. Concurrent generation of hydroxyl radicals on the TiO2 /Ti photocatalyst and in-situ generation of Fenton reagents on the stainless steel electrode greatly enhances the performance of the PEC/PEF electrodes over that of the PEC and the PEF alone process. The efficiency of the PEC/PEF process is a function of Fe2+ and H2 O2 concentration OH⋅ in the solution bulk, which promotes the oxidative degradation of OG and its byproducts. The mean carbon oxidation state (COS) is estimated to reflect the degree of mineralization. Based on the pseudo first-order kinetics with respect to OH, OG, Fe2+ , the corresponding reaction rates is established. UV-Vis spectrometry reveals the presence of four major intermediates, which helps establish the OG degradation pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app