JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Phase separation as a mechanism for assembling dynamic postsynaptic density signalling complexes.

The postsynaptic density (PSD) is an electron dense, semi-membrane bound compartment that lies beneath postsynaptic membranes. This region is densely packed with thousands of proteins that are involved in extensive interactions. During synaptic plasticity, the PSD undergoes changes in size and composition along with changes in synaptic strength that lead to long term potentiation (LTP) or depression (LTD). It is therefore essential to understand the organization principles underlying PSD assembly and rearrangement. Here, we review exciting new findings from recent in vitro reconstitution studies and propose a hypothesis that liquid-liquid phase separation mediates PSD formation and regulation. We also discuss how the properties of PSD formed via phase separation might contribute to the biological functions observed from decades of researches. Finally, we highlight unanswered questions regarding PSD organization and how in vitro reconstitution systems may help to answer these questions in the coming years.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app