Add like
Add dislike
Add to saved papers

Role of GABA B receptors in proepileptic and antiepileptic effects of an applied electric field in rat hippocampus in vitro.

Brain Research 2018 December 30
The mechanisms underlying antiepileptic effects of deep brain stimulation (DBS) are complex and poorly understood. Studies on the effects of applied electric fields on epileptic nervous tissue could enable future advances in DBS treatments. Applied electric fields are known to inhibit or enhance epileptic activity in vitro through direct effects on local neurons, but it is unclear whether trans-synaptic effects participate in such actions. The present study investigated, in an epileptic brain slice model, the influence of GABAB receptor activation on excitatory and suppressive effects of a short-duration (10 ms) electric field in rat hippocampus. The results show that perfusion of the GABAB receptor antagonist, CGP 55845 (2 μM), could abolish applied-field induced suppression of orthodromic-stimulus evoked epileptiform afterdisharge activity in the CA1 region. GABAB receptor blockade was associated with an enhanced excitatory (proepileptic) effect of the applied field. However, the suppressive effect, observed in isolation using weak field stimuli, was left unchanged. The G-protein-activated inwardly rectifying K+ channel (GIRK) antagonist, tertiapin (30 - 50 nM), mimicked the effects of CGP 55845. The results suggest that the applied field activate (elements of) local interneurons to release GABA onto GABAB receptors. The resulting activation of postsynaptic GIRK channels inhibits neuronal activity thereby dampening the direct stimulatory effect of the applied field. The study indicates that local-stimulus induced GABAB receptor activation can serve a protective role under antiepileptic paradigms by preventing electrical stimulation from causing hyperexcitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app