Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of concurrent task performance on transcranial direct current stimulation (tDCS)-Induced changes in cortical physiology and working memory.

Transcranial direct current stimulation (tDCS) provides a means of non-invasively inducing plasticity-related changes in neural circuits in vivo and is experiencing increasing use as a potential tool for modulating brain function. There is growing evidence that tDCS-related outcomes are likely to be influenced by an individual's brain state at the time of stimulation, i.e., effects show a degree of 'state-dependency'. However, few studies have examined the behavioural and physiological impact of state-dependency within cognitively salient brain regions. Here, we applied High-Definition tDCS (HD-tDCS) over the left dorsolateral prefrontal cortex (DLPFC) in 20 healthy participants, whilst they either remained at rest, or performed a cognitive task engaging working memory (WM). In a third condition sham stimulation was administered during task performance. Neurophysiological changes were probed using TMS-evoked potentials (TEPs), event-related potentials (ERPs) recorded during n-back WM tasks, and via resting-state EEG (RS-EEG). From a physiological perspective, our results indicate a degree of neuromodulation following HD-tDCS, regardless of task engagement, as evidenced by changes in TEP amplitudes following both active stimulation conditions. Changes in ERP (P3) amplitudes were also observed for the 2-Back task following stimulation delivered during task performance only. However, no changes were seen on RS-EEG for any condition, nor were any group-level effects of either stimulation condition observed on n-back performance. As such, these findings paint a complex picture of neural and behavioural responses to prefrontal stimulation in healthy subjects and provide only limited support for state-dependent effects of HD-tDCS over the DLPFC overall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app