Add like
Add dislike
Add to saved papers

Tension enhances cell proliferation and collagen synthesis by upregulating expressions of integrin αvβ3 in human keloid-derived mesenchymal stem cells.

Life Sciences 2018 December 29
AIMS: Keloids are a dermal fibrotic disease whose etiology remains totally unknown and for which there is no successful treatment. Mechanical tension, in addition, is closely associated with the germination and development of keloids. In this study, we investigated the influence of human keloid-derived mesenchymal stem cells (KD-MSCs) on cell proliferation, collagen synthesis, and expressions of integrin αvβ3 under tension.

MAIN METHODS: KD-MSCs and human normal skin-derived mesenchymal stem cells (NS-MSCs) were isolated and cultured in stem cell medium with a gradual increase in the serum concentration. Cell proliferation and collagen synthesis were detected by Cell Counting Kit-8 (CCK-8) assay and hydroxyproline content analysis under tension respectively. We investigated the messenger RNA expressions of nine integrin subunits, including integrin units α2, α3, α5, αv, α8, α10, α11, β1, and β3, in KD-MSCs stimulated with tension. Identification of differentially expressed genes was performed by Western blot analysis and immunocytochemistry staining.

KEY FINDINGS: We obtained high-purity KD-MSCs and NS-MSCs using the culture method of decreasing serum concentration gradient gradually. Furthermore, we found that tension enhances cell proliferation and collagen synthesis and promotes expressions of integrin αvβ3 in KD-MSCs. In addition, blocking experiments showed that increased integrin αvβ3 expression affects cell proliferation and collagen synthesis of KD-MSCs under tension.

SIGNIFICANCE: Our results suggest that integrin αvβ3 receptor may be sensitive molecules of mechanical tension and could contribute to the occurrence and development of keloids. It could lead to novel targets for therapeutic intervention, treatment, and prevention of recurrence for keloid disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app