Add like
Add dislike
Add to saved papers

Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN-MWCNT/TiO 2 -NH 2 nanofiber membrane under UV light irradiation.

Background: In this study, the photodegradation of three pharmaceuticals, namely Ibuprofen (IBP), Naproxen (NPX), and Cetirizine (CIZ) in aqueous media was investigated under UV irradiation. The photocatalyst used in this work consists of surface functionalized titanium dioxide (TiO2 -NH2 ) nanoparticles grafted into Polyacrylonitrile (PAN)/multi-walled carbon nanotube composite nanofibers. Surface modification of the fabricated composite nanofibers was illustrated using XRD, FTIR, and SEM analyses.

Results: Sets of experiments were performed to study the effect of pharmaceuticals initial concentration (5-50 mg/L), solution pH (2-9), and irradiation time on the degradation efficiency. The results demonstrated that more than 99% degradation efficiency was obtained for IBP, CIZ, and NPX within 120, 40, and 25 min, respectively.

Conclusions: Comparatively, the photocatalytic degradation of pharmaceuticals using PAN-CNT/TiO2 -NH2 composite nanofibers was much more efficient than with PAN/TiO2 -NH2 composite nanofibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app