Add like
Add dislike
Add to saved papers

Dissociating effect of salivary gland extract from Ixodes ricinus on human fibroblasts: Potential impact on Borrelia transmission.

Understanding the mechanism of pathogen transmission is essential for the development of strategies to reduce arthropod-borne diseases. The pharmaco- and immunomodulatory properties of insect and acarine saliva play an essential role in the efficiency of pathogen transmission. The skin as the site where arthropod saliva and pathogens are inoculated - represents the key interface in vector-borne diseases. We identified tick molecules potentially involved in pathogen transmission, using micro-HPLC and mass spectrometry, followed by in vitro assays on human skin cells. Histone H4 isolated from Ixodes ricinus salivary gland extract was identified as a molecule with a dissociating effect on human primary fibroblasts. This histone might be involved in the formation of the feeding pool formed around the tick mouthparts and responsible of tissue necrosis in the vertebrate host. Thanks to its selective antimicrobial activity, it may also sterilize the feeding pool and facilitate transmission of pathogens such as Borrelia burgdorferi sensu lato.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app