Add like
Add dislike
Add to saved papers

Multigenerational consequences of early-life cannabinoid exposure in zebrafish.

While Δ9 -tetrahydrocannabinol (THC) has been widely studied in the realm of developmental and reproductive toxicology, few studies have investigated potential toxicities from a second widely used cannabis constituent, cannabidiol (CBD). CBD is popularized for its therapeutic potential for reducing seizure frequencies in epilepsy. This study investigated developmental origins of health and disease (DOHaD) via multigenerational gene expression patterns, behavior phenotypes, and reproductive fitness of a subsequent F1 following an F0 developmental exposure of zebrafish (Danio rerio) to THC (0.024, 0.12, 0.6 mg/L; 0.08, 0.4, 2 μM) or CBD (0.006, 0.03, 0.15 mg/L; 0.02, 0.1, 0.5 μM). Embryonic exposure at these concentrations did not cause notable morphological abnormalities in either F0 or F1 generations. However, during key developmental stages (14, 24, 48, 72, and 96 h post fertilization) THC and CBD caused differential expression of c-fos, brain-derived neurotrophic factor (bdnf), and deleted-in-azoospermia like (dazl), while in F1 larvae only CBD differentially expressed dazl. Larval photomotor behavior was reduced (F0) or increased (F1) by THC exposure, while CBD had no effect on F0 larvae, but decreased activity in the unexposed F1 larvae. These results support our hypothesis of cannabinoid-related developmental neurotoxicity. As adults, F0 fecundity was reduced, but this was not in F1 adults. Conversely, in the adult open field test there were no significant effects in F0 fish, but a significant reduction in the time in periphery was seen in F1 s from the highest THC exposure group. The results highlight the need to consider long-term ramifications of early-life exposure to cannabinoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app