Add like
Add dislike
Add to saved papers

Drosophila homolog of the intellectual disability-related long-chain acyl-CoA synthetase 4 is required for neuroblast proliferation.

Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely unexplored. We report here that mutations in Acsl, the Drosophila ortholog of human ACSL3 and ACSL4, result in developmental defects of the mushroom body (MB), the center of olfactory learning and memory. Specifically, Acsl mutants show fewer MB neuroblasts (Nbs) due to reduced proliferation activity and premature differentiation. Consistently, these surviving Nbs show reduced expression of cyclin E, a key regulator of the G1-to S-phase cell cycle transition, and nuclear mislocalization of the transcriptional factor Prospero, which is known to repress self-renewal genes and activate differentiating genes. Furthermore, RNA-seq analysis reveals downregulated Nb- and cell-cycle-related genes and upregulated neuronal differentiation genes in Acsl mutant Nbs. As Drosophila Acsl and human ACSL4 are functionally conserved, our findings provide novel insights into a critical and previously unappreciated role of Acsl in neurogenesis and the pathogenesis of ACSL4-related ID.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app