Add like
Add dislike
Add to saved papers

Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe 3+ ions and tetracyclines.

Nitrogen-doped carbon quantum dots (N-CQDs) were successfully synthesized using rice residue and glycine as carbon and nitrogen sources by one-step hydrothermal method. High quantum yield (23.48%) originated from the effective combination of nitrogen with various functional groups (CO, NH, CN, COOH and COC). The N-CQDs showed a fluorescence with the wavelength varied from 420 to 500 nm and the maximum emission wavelength being at 440 nm. N-CQDs have been importantly applied as probe to detect Fe3+ and tetracycline (TCs) antibiotics with remarkable performance. Using the linear relationship between fluorescence intensity and Fe3+ concentration, the N-CQDs could be employed as a simple, efficient sensor for ultrasensitive Fe3+ detection ranging from 3.32 to 32.26 µM, with a limit of detection (LOD) of 0.7462 µM. The N-CQDs showed the applicability to detect TCs. The detection limits of tetracycline, terramycin and chlortetracycline were 0.2367, 0.3739 and 0.2791 µM, respectively. The results of TC by fluorescence method in real water samples were in good agreement with standard Ultraviolet-visible (UV-vis) method. The N-CQDs have various potential applications including sensitive and selective detection of Fe3+ and TCs, and cellular imaging with low cytotoxicity, good biocompatibility and high permeability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app