Add like
Add dislike
Add to saved papers

High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads.

Multicellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior. HNSCC MCTS cultures exhibited drug penetration and distribution gradients and some developed necrotic cores. Perhaps the most profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and varied growth phenotypes. Instead of the exponential growth that are characteristic of two-dimensional HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, categorized as rapid, moderate, or slow, dormant MCTSs remained viable but did not grow, and some MCTSs exhibited death phenotypes that were either progressive and slow or rapid. The ability of MCTS cultures to develop microenvironments and to display a variety of different growth phenotypes provides in vitro models that are more closely aligned with solid tumors in vivo. We anticipate that the implementation MCTS models to screen for new cancer drugs for solid tumors like HNSCC will produce leads that will translate better in in vivo animal models and patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app