Add like
Add dislike
Add to saved papers

Composition-Morphology Correlation in PTB7-Th/PC 71 BM Blend Films for Organic Solar Cells.

From a morphological perspective, the understanding of the influence of the [6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM) content on the morphology of the active layer is not complete in organic solar cells (OSCs) with bulk heterojunction (BHJ) configuration based on the low-bandgap polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2- b;4,5- b']dithiophene-2,6-diyl- alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th). In this work, we obtain the highest power conversion efficiency (PCE) of 10.5% for BHJ organic solar cells (OSCs) with a PTB7-Th/PC71 BM weight ratio of 1:1.5. To understand the differences in PCEs caused by the PC71 BM content, we investigate the morphology of PTB7-Th/PC71 BM blend films in detail by determining the domain sizes, the polymer crystal structure, optical properties, and vertical composition as a function of the PC71 BM concentration. The surface morphology is examined with atomic force microscopy, and the inner film morphology is probed with grazing incidence small-angle X-ray scattering. The PTB7-Th crystal structure is characterized with grazing incidence wide-angle X-ray scattering and UV/vis spectroscopy. X-ray reflectivity is employed to yield information about the film vertical composition. The results show that in PTB7-Th/PC71 BM blend films, the increase of PC71 BM content leads to an enhanced microphase separation and a decreased polymer crystallinity. Moreover, a high PC71 BM concentration is found to decrease the polymer domain sizes and crystal sizes and to promote polymer conjugation length and formation of fullerene-rich and/or polymer-rich layers. The differences in photovoltaic performance are well explained by these findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app