Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility.

Skeletal Muscle 2018 December 28
BACKGROUND: β2 -adrenergic receptors (β2 ARs) are the target of catecholamines and play fundamental roles in cardiovascular, pulmonary, and skeletal muscle physiology. An important action of β2 AR stimulation on skeletal muscle is anabolic growth, which has led to the use of agonists such as clenbuterol by athletes to enhance muscle performance. While previous work has demonstrated that β2 ARs can engage distinct signaling and functional cascades mediated by either G proteins or the multifunctional adaptor protein, β-arrestin, the precise role of β-arrestin in skeletal muscle physiology is not known. Here, we tested the hypothesis that agonist activation of the β2 AR by clenbuterol would engage β-arrestin as a key transducer of anabolic skeletal muscle growth.

METHODS: The contractile force of isolated extensor digitorum longus muscle (EDL) and calcium signaling in isolated flexor digitorum brevis (FDB) fibers were examined from the wild-type (WT) and β-arrestin 1 knockout mice (βarr1KO) followed by chronic administration of clenbuterol (1 mg/kg/d). Hypertrophic responses including fiber composition and fiber size were examined by immunohistochemical imaging. We performed a targeted phosphoproteomic analysis on clenbuterol stimulated primary cultured myoblasts from WT and βarr1KO mice. Statistical significance was determined by using a two-way analysis with Sidak's or Tukey's multiple comparison test and the Student's t test.

RESULTS: Chronic administration of clenbuterol to WT mice enhanced the contractile force of EDL muscle and calcium signaling in isolated FDB fibers. In contrast, when administered to βarr1KO mice, the effect of clenbuterol on contractile force and calcium influx was blunted. While clenbuterol-induced hypertrophic responses were observed in WT mice, this response was abrogated in mice lacking β-arrestin 1. In primary cultured myoblasts, clenbuterol-stimulated phosphorylation of multiple pro-hypertrophy proteins required the presence of β-arrestin 1.

CONCLUSIONS: We have identified a previously unappreciated role for β-arrestin 1 in mediating β2 AR-stimulated skeletal muscle growth and strength. We propose these findings could have important implications in the design of future pharmacologic agents aimed at reversing pathological conditions associated with skeletal muscle wasting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app