Add like
Add dislike
Add to saved papers

Electrical stimulation of human corticospinal axons at the level of the lumbar spinal segments.

Electrical stimulation over the mastoids or thoracic spinous processes has been used to assess subcortical contribution to corticospinal excitability, but responses are difficult to evoke in the resting lower limbs or are limited to only a few muscle groups. This might be mitigated by delivering the stimuli lower on the spinal column, where the descending tracts contain a greater relative density of motoneurons projecting to lower limb muscles. We investigated activation of the corticospinal axons innervating tibialis anterior (TA) and rectus femoris (RF) by applying a single electrical stimulus over the first lumbar spinous process (LS). LS was paired with transcranial magnetic stimulation (TMS) at interstimulus intervals (ISIs) of -16 (TMS before LS) to 14 ms (LS before TMS). The relationship between muscle contraction strength (10-100% maximal) and the amplitude of single pulse TMS and LS responses were also investigated. Compared to the responses to TMS alone, responses to paired stimulation were significantly occluded in both muscles for ISIs ≥-8 ms (p≤0.035), consistent with collision of descending volleys from TMS with antidromic volleys originating from LS. This suggests that TMS and LS activate some of the same corticospinal axons. Additionally, the amplitude of TMS and LS responses increased with increasing contraction strengths with no change in onset latency, suggesting responses to LS are evoked transsynaptically and have a monosynaptic component. Taken together, these experiments provide evidence that LS is an alternative method that could be used to discern segmental changes in the corticospinal tract when targeting lower limb muscles. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app