Add like
Add dislike
Add to saved papers

Protective Effect of Hydroxysafflor Yellow A on Inflammatory Injury in Chronic Obstructive Pulmonary Disease Rats.

OBJECTIVE: To investigate the attenuating effect of Hydroxysafflor yellow A (HSYA) on inflammatory injury in chronic obstructive pulmonary disease (COPD).

METHODS: Rats were randomly assigned to 7 groups according to body weight including normal control group, HSYA blank group (76.8 mg/kg), COPD group, COPD+HSYA (30, 48, 76.8 mg/kg) groups and COPD+dexamethasone (2 mg/kg), 10 in each group. Passive cigarette smoke and intratracheal instillation of lipopolysaccharides were used to establish a COPD model in rats. Hematoxylin and eosin staining of lung tissue sections was used, real-time polymerase chain reaction (PCR) was used to assay mRNA levels of some cytokines in lung tissues, the cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA), Western blot analysis was used to determine phosphorylated p38 mitogen-activated protein kinase (MAPK) levels in lung tissues, and nuclear factor-κB (NF-κB) p65 protein levels in lung tissues were detected by immunohistochemistry.

RESULTS: Lung alveolar septa destruction, alveolus fusion, inflammatory cell infiltration, and bronchiole exudation were observed. These pathological changes were alleviated in the COPD+HSYA group. The mRNA expression of inflammatory factors were significantly increased in lung tissues from COPD rats (all P<0.01) and were inhibited by HSYA. Levels of inflammatory cytokines in BALF of COPD rats were significantly increased (all P<0.01) which were inhibited by HSYA (all P<0.01, 48, 76.8 mg/kg). The levels of p38 MAPK phosphorylation and p65 in lung tissues of COPD rats were significantly increased (all P<0.01) and were suppressed by HSYA (all P<0.01, 48, 76.8 mg/kg).

CONCLUSIONS: HSYA could alleviate inflammatory cell infiltration and other pathological changes in the lungs of COPD rats. HSYA inhibited inflammatory cytokine expression, and increase phosphorylation of p38 MAPK and NF-κB p65 in the lungs of COPD rats. The protective mechanism of HSYA to inhibit COPD inflammation might be by attenuating NF-κB and p38MAPK signal transduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app