Add like
Add dislike
Add to saved papers

TSR-033, a Novel Therapeutic Antibody Targeting LAG-3, Enhances T-Cell Function and the Activity of PD-1 Blockade In Vitro and In Vivo .

Progressive upregulation of checkpoints on tumor-infiltrating lymphocytes promotes an immunosuppressive tumor microenvironment, severely compromising tumor immunity. Lymphocyte activation gene-3 (LAG-3) is a coinhibitory receptor associated with impaired T-cell function and is frequently coexpressed with programmed cell death protein-1 (PD-1) in the context of human cancers. Targeting LAG-3 in conjunction with PD-1 thus represents a strategy to amplify and broaden the therapeutic impact of PD-1 blockade alone. We have generated a high affinity and selective humanized monoclonal IgG4 antibody, TSR-033, which binds human LAG-3 and serves as a functional antagonist, enhancing in vitro T-cell activation both in mixed lymphocyte reactions and staphylococcal enterotoxin B-driven stimulation assays. In a humanized mouse non-small cell lung carcinoma model, TSR-033 boosted the antitumor efficacy of PD-1 monotherapy, with a concomitant increase in immune activation. Analogous studies in a murine syngeneic tumor model using surrogate antibodies demonstrated significant synergy between LAG-3 and PD-1 blockade-combination treatment led to a marked improvement in therapeutic efficacy, increased T-cell proliferation, IFNγ production, and elicited durable immunologic memory upon tumor rechallenge. Taken together, the pharmacologic activity of TSR-033 demonstrates that it is a potent anti-LAG-3 therapeutic antibody and supports its clinical investigation in cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app