Add like
Add dislike
Add to saved papers

Microscopic Behaviors of Tri-n-Butyl Phosphate, n-Dodecane and Their Mixtures at Air/Liquid and Liquid/Liquid Interfaces: An AMBER Polarizable Force Field Study.

In solvent extraction processes for recovering metal ions from used nuclear fuel, as well as other industrial applications, a better understanding of the metal complex phase transfer phenomenon would greatly aid ligand design and process optimization. We have approached this challenge by utilizing classical molecular dynamics simulations technique to gain visual appreciation of the vapor/liquid and liquid/liquid interface between tri-n-butyl phosphate (TBP) and n-dodecane with air and water. In this study, we successfully reparameterized polarizable force fields for TBP and n-dodecane that accurately reproduced several of their thermophysical properties such as: density, heat of vaporization, and dipole moment. Our models were able to predict the surface and interfacial tension of different systems when compared to experimental results also performed by us. Through this study, we gained numerous atomistic understanding of the behaviors of TBP and n-dodecane at the interface against air and water, useful in further computational studies of such systems. Finally, our studies indicate that the initial configuration of a simulation may have a large effect on the final result.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app