Add like
Add dislike
Add to saved papers

LncRNA RMRP silence curbs neonatal neuroblastoma progression by regulating microRNA-206/tachykinin-1 receptor axis via inactivating extracellular signal-regulated kinases.

Cancer Biology & Therapy 2018 December 25
BACKGROUND: Neuroblastoma is the commonest malignancy in neonates. Long non-coding RNA (lncRNA) RNA component of mitochondrial RNA processing endoribonuclease (RMRP) has been reported to be an oncogenic factor in some malignancies. However, its roles and molecular mechanisms in neuroblastoma progression are poor defined.

METHODS: The expression of RMRP, microRNA-206 (miR-206), and tachykinin-1 receptor (TACR1) mRNA was measured by RT-qPCR assay. Protein levels of TACR1, phosphorylated extracellular signal-regulated kinases (ERK) 1/2 (p-ERK1/2) and ERK1/2 were detected by western blot assay. Cell proliferation was assessed by CCK-8 and colony formation assays. Cell migratory and invasive capacities were determined using Transwell migration and invasion assays. The interaction between miR-206 and RMRP or TACR1 was verified by luciferase assay. The roles and molecular mechanisms of RMRP knockdown on the growth of neuroblastoma xenografts were examined in vivo.

RESULTS: RMRP was highly expressed in neuroblastoma tissues. RMRP knockdown inhibited proliferation, migration and invasion in neuroblastoma cells. Moreover, TACR1 was a target of miR-206 and RMRP performed as a molecular sponge of miR-206 to sequester miR-206 from TACR1 in neuroblastoma cells. TACR1 overexpression abrogated the inhibitory effect of RMRP downregulation on neuroblastoma cell progression by activating ERK1/2 pathway. Inhibition of TACR1 and ERK1/2 pathway abated RMRP-mediated pro-proliferation effect in neuroblastoma cells. RMRP knockdown hindered neuroblastoma xenograft growth by regulating miR-206/TACR1 axis via inactivating ERK1/2 pathway in vivo.

CONCLUSION: RMRP knockdown hindered the tumorigenesis and progression of neuroblastoma by regulating miR-206/TACR1 axis via inactivating ERK1/2 pathway, hinting a potential therapeutic target for neuroblastoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app