Add like
Add dislike
Add to saved papers

Reduced expression of synapsin II in a chronic phencyclidine preclinical rat model of schizophrenia.

Synapse 2018 December 25
Schizophrenia is a mental disorder characterized by positive symptoms, negative symptoms, and cognitive dysfunction. Phencyclidine (PCP) - a N-methyl-D-aspartate (NMDA) receptor antagonist - induces symptoms indistinguishable from those of schizophrenia. A reduction of the phosphoprotein synapsin II has also been implicated in schizophrenia and has a well-known role in the maintenance of the presynaptic reserve pool and vesicle mobilization. This study assessed the behavioral and biochemical outcomes of chronic NMDA receptor antagonism in rodents and its implications for the pathophysiology of schizophrenia. Sprague Dawley rats received saline or chronic PCP (5mg/kg/day) for 14 days via surgically implanted Alzet® osmotic mini-pumps. Following the treatment period, rats were tested with a series of behavioral paradigms, including locomotor activity, social interaction, and sensorimotor gating. Following behavioral assessment, the medial prefrontal cortex of all rats was isolated for synapsin II protein analysis. Chronic PCP treatment yielded a hyper-locomotive state (p=0.0256), reduced social interaction (p=0.0005), and reduced pre-pulse inhibition (p<0.0001) in comparison to saline-treated controls. Synapsin IIa (p<0.0001) and IIb (p<0.0071) levels in the medial prefrontal cortex of chronically-treated PCP rats were reduced in comparison to the saline group. Study results confirm that rats subject to chronic PCP treatment display behavioral phenotypes similar to established preclinical animal models of schizophrenia. Reduction of synapsin II expression in this context implicates the role of this protein in the pathophysiology of schizophrenia and sheds light on the longer-term consequences of NMDA receptor antagonism facilitated by chronic PCP treatment. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app