Add like
Add dislike
Add to saved papers

Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Contribute to Functional Heterogeneity of Activated Fibroblasts by Reprogramming Their Proteome.

Proteomics 2018 December 24
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of activated fibroblasts that constitute a dominant cellular component of the tumour microenvironment (TME) performing distinct functions. Here, we investigated the role of tumour-derived exosomes in activating quiescent fibroblasts into distinct functional subtypes. Proteomic profiling and functional dissection revealed that early (SW480) and late-stage (SW620) colorectal cancer (CRC) cell-derived exosomes both activated normal quiescent fibroblasts (α-SMA- , CAV+ , FAP+ , VIM+ ) into CAF-like fibroblasts (α-SMA+ , CAV- FAP+ , VIM+ ). Fibroblasts activated by early stage cancer-exosomes (SW480-Exos) were highly pro-proliferative and pro-angiogenic and displayed elevated expression of pro-angiogenic (IL8, RAB10, NDRG1) and pro-proliferative (SA1008, FFPS) proteins. In contrast, fibroblasts activated by late stage cancer-exosomes (SW620-Exos) displayed a striking ability to invade through extracellular matrix through upregulation of pro-invasive regulators of membrane protrusion (PDLIM1, MYO1B) and elevated secretion of matrix-remodelling proteins (MMP11, EMMPRIN, ADAM10). Conserved features of exosome-mediated fibroblast activation include enhanced ECM secretion (type I collagen, Tenascin C/X), oncogenic transformation and metabolic reprogramming (e.g., downregulation of metabolic switch CAV-1, upregulation of glycogen metabolism (GAA), amino acid biosynthesis (SHMT2, IDH2) and membrane transporters of glucose (GLUT-1), lactate (MCT4) and amino acids (SLC1A5/3A5)). This study highlights the role of primary and metastatic CRC tumour-derived exosomes in generating phenotypically and functionally distinct subsets of CAFs that may facilitate tumour progression. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app