JOURNAL ARTICLE

A Model of Piezo1-Based Regulation of Red Blood Cell Volume

Saša Svetina, Tjaša Švelc Kebe, Bojan Božič
Biophysical Journal 2018 December 4
30580922
A red blood cell (RBC) performs its function of adequately carrying respiratory gases in blood by its volume being ∼60% of that of a sphere with the same membrane area. For this purpose, human and most other vertebrate RBCs regulate their content of potassium (K+ ) and sodium (Na+ ) ions. The focus considered here is on K+ efflux through calcium-ion (Ca2+ )-activated Gárdos channels. These channels open under conditions that allow Ca2+ to enter RBCs through Piezo1 mechanosensitive cation-permeable channels. It is postulated that the fraction of open Piezo1 channels depends on the RBC shape as a result of the curvature-dependent Piezo1-bilayer membrane interaction. The consequences of this postulate are studied by introducing a simple model of RBC osmotic behavior supplemented by the dependence of RBC membrane K+ permeability on the reduced volume (i.e., the ratio of cell volume to its maximal possible volume) of RBC discoid shapes. It is assumed that because of its intrinsic curvature and strong interaction with the surrounding membrane, Piezo1 tends to concentrate in the dimple regions of these shapes, and the fraction of open Piezo1 channels depends on the membrane curvature in that region. It is shown that the properties of the described model can provide the basis for the formation of the negative feedback loop that interrelates cell volume and its content of potassium ions. The model predicts the relation, valid for each cell in an RBC population, between RBC volume and membrane area, thus explaining the large value of the measured membrane area versus the volume correlation coefficient. The mechanism proposed here for RBC volume regulation is in accord with the loss of this correlation in RBCs of Piezo1 knockout mice.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
30580922
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"