JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of synthetic surfactants and soapwort (Saponaria officinalis L.) extract on skin-mimetic model lipid monolayers.

The effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively. Both lipid mixtures on Milli-Q water were first compressed to the initial surface pressure, Π0  = 30 mN/m and then the subphase was exchanged with the respective (bio)surfactant solution at 1% (w/w). All four synthetic surfactants behaved in a similar way: they increased surface pressure to about 40 mN/m and reduced the storage modulus of surface dilational surface rheology, E', to the values close to zero. The corresponding fluorescence microscopy pictures confirmed that the lipids mimicking the stratum corneum components were almost completely removed by the synthetic surfactants under the present experimental conditions. The components of the Soapwort extract (SAP) increased surface pressure to significantly higher values than the synthetic surfactants, but even more spectacular increase was observed for the storage modulus of the SAP-penetrated lipid monolayers (up to E'= 715 mN/m).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app